The importance of the textbook has been quite significant in the teaching/learning process. Throughout time it has been a privileged teaching instrument that has influenced the activities developed in the classroom. Some studies have stated that the school manual is one of the most used instruments by teachers. The analysis of the contents has been chosen as a research object in the didactics of sciences with different objectives. Accounting for the role of the textbook, its analysis allows us to understand the way in which the electromagnetism and electromagnetic induction were introduced in the high school teaching and it can give clues about the processes of knowledge transfer. The introduction of images and their relationship to the text can indicate the way through which the student/reader is introduced to the world of experimental physics or how the products of technology can insert a social dimension in a teaching process oriented to the theoretical principles of Physics. The comparison between the contents of the official program and the contents presented in the textbook can be a pertinent indicator of the manual?s importance in promoting the wide spreading of new concepts and their practical applications. The time proximity of the discoveries, i.e., the transposition of the produced science (discoveries and/or inventions) can be an indicator of the actuality of the issues dealt with in the school manual. It was necessary to research in order to locate the programs of Physics and the textbooks adopted since the creation of this school subject, in 1855 until 1974. This analysis focused on the textbooks used in the last academic high school year in Portugal. A qualitative analysis methodology was followed, in which text extracts and figures were transcribed, that were used as an indicator of the way the contents were presented. The results allow us to state that during 19th century and the beginning of the 20th, French textbooks adopted in Portuguese high schools had great influence on the teaching process. They were adopted and much used in high schools from 1855 until 1918. This influence was positive since those were books, which dealt with present issues that were not included in the official programs, allowing the wide spreading of new concepts and their practical applications. Although the electromagnetic induction appeared in the official program only in 1880, it was presented before in almost all Portuguese and French manuals adopted in Portugal. Ruhmkorff's bobbin and its practical applications, especially the electrical discharge, in tubes containing rarefied gases, has deserved an important attention in the school textbooks. The level of contents deepening was not the same in all books. A. Ganot's "Traité Élémentaire de Physique" is a pertinent book due to the deepening level given to electromagnetism and electromagnetic induction, comparatively to the remaining manuals of the time. During 19th century, a great uniformity is observed in the presentation of electromagnetism and electromagnetic induction. At that time, the textbooks frequently presented the theory with little conceptualisation, followed by several practical applications. The figures that appear in the Portuguese textbooks are the same or similar to Ganot's one and the presentation of topics also follows the same order. Until 1900 the textbooks simply described the phenomena without presenting any mathematical formalism that appeared in French manuals adopted in the beginning of the 20th century. From this time on, the illustrations of the textbooks were no more just pictures of real objects, but graphics and schemes started to be used. A scientific update of the manuals is verified and it is more evident during the 19th century and the beginning of the 20th century, reflecting the influence of French textbooks. In this period the school manuals frequently refer recent discoveries and practical applications. Ganot's "Traité Élémentaire de Physique", 1857 edition, includes Ruhmkorff's bobbin and its practical applications as well as Foucault's currents. The bobbin was built in 1851 and Foucault's article had been published in 1855. E. Drincourt's "Traité de Physique", 1900 edition, has a reference to wireless telegraphy, which was a new topic at the time. It explains how Brantly's detector works, a discovery that had been published in 1890. It also includes the X-rays that had been just found in 1895. M. Chasagny's "Cours Élémentaire de Physique", 1907 edition, refers J. Perrin's work, which in 1895 proved that the cathodic rays were negatively charged particles. The textbooks used in Portuguese high school, from 1855 up to 1954, include no activities for the students. Only José Teixeira's "Curso de Física", adopted since 1954 until 1974, presents a few numerical exercises to be solved at the end of each chapter. The laboratory equipment was always presented in an inductive/verificative perspective of the theory.