Electrical heterogeneity in the heart: physiological, pharmacological and clinical implications

Charles Antzelevitch, Robert Dumaine

10.1002/cphy.cp020117


Published online: January 2011

Abstract

The sections in this article are:

1 Action Potential and Ionic Distinctions
1.1 Methodological Considerations in the Assessment of Electrical Heterogeneity
2 Pharmacological Distinctions
2.1 Epicardium versus Endocardium
2.2 M-cells versus Epicardium and Endocardium
2.3 M-cells versus Purkinje Cells
3 Molecular Distinctions
3.1 Potassium Channels
3.2 Sodium Channels
3.3 Gap Junctions
3.4 Chloride Conductances
3.5 Calcium Channels
3.6 Pumps and Exchangers
4 Simulation of Action Potential Heterogeneity
5 Developmental Aspects
6 Physiological and Clinical Implications
6.1 Transmural Distribution of Ito and the J Wave
6.2 Phase 2 Re-entry as a Mechanism of Extrasystolic Activity
6.3 Phase 2 Re-entry as a Trigger for VT/VF: The Brugada Syndrome
6.4 Early Repolarization Syndrome
6.5 Ischemia
6.6 Role of Transmural Heterogeneity in Inscription of the Electrocardiographic T Wave
6.7 Role of Transmural Heterogeneity in Inscription of the U Wave
6.8 Role of Transmural Heterogeneity in the Long QT Syndrome
6.9 Torsade de Pointes
6.10 Pharmacological Therapy for LQTS: Reducing Transmural Dispersion of Repolarization
7 Summary

Pharmacology, Physiology, Clinical Curriculum. Anesthesiology. Cardiology. Using electrodes, ECG can record electric fields on the skin surface of the body. They are created by the transfer of charges during the spread of electrical excitation in the heart and are represented in the ECG by the differences in potential. The ECG waves only provide information about the spread of excitation and involution in the myocardium (but not about its mechanical activity).